
J .  Fluid Mech. (1986), vol. 172, p p .  453480 
Printed in Great Britain 

453 

Measurements of internal gravity waves in 
a continuously stratified shear flow 
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A theoretical wave-action model, based on the work of Grimshaw (1974), is presented 
which describes broadbanded internal wave motions in a stratified shear flow with the 
viscous terms included. The model shows that in the neighbourhood of the critical 
level viscosity can have important effects and can stabilize the flow with respect to 
convective overturning. The predictions of the model are compared with the results 
of an experimental study where detailed measurements of the velocity and density 
fields are made within an internal wave packet propagating through a continuously 
stratified shear flow. The results show that the model accurately predicts the 
occurrence or non-occurrence of wave overturning due to interactions with the shear, 
and provides an accurate description of the structure of the wave-induced density 
and velocity fluctuations in those regions of the flow where the assumptions of the 
model are satisfied. 

1. Introduction 
In a previous paper (Koop 1981) we presented preliminary results pertaining to 

the propagation of internal gravity waves in a stratified shear flow. The results of 
that work were primarily qualitative and presented in the form of shadowgraph 
visualizations. The intent of the present study is to expand upon our previous work 
and investigate the phenomenology of wave/shear interactions in a more quantitative 
manner. Toward this goal, we have instrumented the experimental facility with a 
number of flow sensors, primarily hot-film gauges and conductivity probes, so that 
a detailed description of the wave field velocity and density structure may be 
obtained . 

Of particular concern in this study is the characterization of wave/shear interactions 
which lead to the production of localized turbulent events. Such wave-induced 
turbulent mixing can have an important effect upon vertical diffusion processes in 
both the atmosphere and ocean (cf. Bell 1975; Munk 1980). To interpret the 
experimental results, we have appealed to the theory of wave-action density, as 
derived by Bretherton (1966), Grimshaw (1974), Broutman (1982), among others. In 
presenting the experimental results, a number of direct comparisons are made 
between the predictions of this theory and the measurements. The experiments 
presented compliment those of Thorpe (1981) who considered sinusoidal waves in an 
accelerating flow, and include broadband disturbances generated by compact sources 
in addition to sinusoidal waves in a steady stratified shear flow. The analytical method 
utilized differs from Thorpe’s perturbation approach in that the WKB approximation 
is employed in a wave-action formulation. 
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2. Theoretical background 
An important contribution made to the understanding of internal gravity waves 

propagating in a moving fluid was made by Bretherton (1966). Using the WKB 
approximation, Bretherton considered the interaction of small amplitude waves with 
an inviscid slowly varying shear flow. The essential result of this work was the 
derivation of a conservation equation describing the evolution of the wave-action 
density; a quantity which represents the local energy density divided by the intrinsic 
frequency of the wave. An extension to this analysis was made by Grimshaw (1974) 
who removed the small amplitude assumption and included the effects of dissipation 
and thermal diffusion to derive the following set of equations (nomenclature is that 
of Grimshaw 1974) : 

A,+V“A(c+ u ) ] + V K 2 ( X ) A  = 0, 

DU 
P 0 - - + V . [ A C K H ] + V H 1 )  Dt = 0. 

Equations (1) and (2) are fully nonlinear with no restrictions being made on wave 
amplitude. As a result, the equations are inextricably coupled, with mean flow 
modifications being driven by gradients in wave action which subsequently feed back 
into the wave-action equation. As noted by Grimshaw (1975), however, in the 
small-amplitude limit this feedback process is removed and the twp equations 
become decoupled such that the mean flow does not vary in time. 

A further simplification to this system of equations can be made by assuming the 
wave field to be stationary in time (i.e. lee waves). For the purposes of the present 
investigation this simplification is appropriate, as lee-wave generation is the experi- 
mental technique employed for the production of internal waves. For small-amplitude 
stationary lee waves, a two-dimensional sinusoidal disturbance of horizontal wave- 
number k in a steady shear flow (for infinite Prandtl number) is prescribed by the 
following 

where 

(3) 

(4) 

Here, wk( z) is related to the two-dimensional wave-induced vertical velocity field 
Wk(2, z) for wavenumber k as: 

Wk(& z) = wk(z) exp (ikz) + complex conjugate. (5) 

Assuming conditions to be known a t  some level, z = zo, (3) may be integrated to 
yield : 

For spatially compact disturbances comprised of many horizontal wrtvenumbers, 
Fourier superposition techniques are employed. In this case, the wave-induced 
density and velocity fields may be computed from w(z, z) as : 
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Equations (3)-(7) constitute the analytic model used to compare wave-action 
analysis with the results of the experimental investigation. As presently formulated, 
the analysis is more restrictive than Grimshaw’s original derivation. The assumptions 
inherent in the present analytic model are: 

P L  
e=- 4 1; 

9 

( a )  The medium is slowly varying such that the parameter 

(b) The disturbances are weak (i.e. ka 4 1 where a is the disturbance amplitude) 

(c) The waves are stationary lee waves; 
( d )  The infinite Prandtl number limit has been taken. 
In  $5, the accuracy of these assumptions as applied to the description of the 

in order to decouple the wave action and mean flow equations; 

present experimental results are discussed. 

3. Experimental apparatus and procedure 
The experimental facility shown in figure 1 (a) is the same as that described fully 

in Koop (1981). The channel is stratified in a continuous fashion by smootWly varying 
the salinity content of the fluid from bottom to top. The fluid moves around the 
annular channel under the action of the pumping mechanism, depicted in figure 1 (b), 
which consists of two stacks of closely spaced circular plates that counter-rotate and 
impart momentum to the fluid by viscous stresses. A double gearing system permits 
independent control of the rotation rate of the upper and lower halves of the two 
stacks, and differential rotation between the two halves is used to produce a shearing 
motion. 

Internal waves are generated by towing several types of solid objects through the 
test section in the same direction as the fluid motion. A shadowgraph system is used 
to visualize the resulting wave field. Figure 2 shows the manner in which wave fields 
containing a critical level are generated. For towing speeds less than the maximum 
flow velocity, the internal lee waves radiating away from the solid object encounter 
a point in the flow where the local fluid velocity matches the wave propagation speed, 
which by definition is the location of the critical level. Two classes of disturbances 
were studied, viz. sinusoidally varying corrugated boundaries several wavelengths in 
spatial extent and spatially compact disturbances having contour shapes that were 
Gaussian profiles. Table 1 (a) summarizes the characteristics of these disturbance 
sources. Table 1 (b) summarizes the test conditions used. Typically the fluid velocity 
varied between nearly zero close to the bottom, and 3-5.5 cm/s in the upper region 
of the channel. Over this range of velocities, the ambient gradient Richardson 
number, Ri, within the sheared region varied between 5 and 50. 

An addition made to the original experimental apparatus of Koop (1981) is a sensor 
system used for making quantitative measurements of both the velocity and density 
fields generated by the internal wave fields under study. This sensor system, shown 
schematically in figure 3, consists of: 

(a)  An 11 -sensor vertically aligned rake of conductivity probes fixed in laboratory 
coordinates ; 

(b) A 10-sensor vertically aligned rake of hot-film anemometers fixed in laboratory 
coordinates ; 

(c) A 3-sensor hot-film, conductivity probe, thermistor arrangement which con- 
tinuously cycled vertically up and down at a constant speed ( & 1.65 cm/s). The fixed 
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Flow 
Modified ‘Kovasmay ’ pump 

Plan view 

Upper and lower 
halves may rotate 
differentially to 
produce shear 

FIQURE 1 .  (a) Schematic of the stratified shear-flow facility. 
(b)  Detail of the pumping mechanisms. 

. Wavephase c 
I I 1 
I I L - I 

Profile towed at U,,, 

FIQURE 2. Sketch depicting manner in which critical layer flows were generated experimentally. 
For critical layer operation: U,,, < Urn,,. 

sensors are laterally offset from the cycling probes to prevent their being influenced 
by the motion of the oscillating probes. 

The fixed-rake probes provide a quantitative measure of the time history of the 
velocity and density fields at several discrete vertical positions as the waves 
propagate past the sensors. The cycling probes measure the vertical structure of the 
flow field. Figure 4 presents an example of the mean velocity distribution measured 
using the vertically cycling anemometer. The velocity distribution measured simul- 
taneously by recording the distortion of a vertical dye streak is presented for 
comparison. 
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(a) 
I. Corrugated wall 1 : 

11. Corrugated wall 2: 

111. Gaussian profile 1 : 

IV. Gaussian profile 2: 

(4 

Test Internal 
condition wave source 

Ia 

I b  

I1 

I11 

IV 

V 

A = 7.5 cm 
Corrugated wall 

A=15cm 
Corrugated wall 

a, = 0.5 cm 
Gaussian profile 1 

a, = 1 cm 
Gaussian profile 2 

a, = 0.5 cm 
Gaussian profile 1 

a, = 1 cm 
Gaussian profile 2 

Towing 
speed 
(cm/s) 

2.5 

3.88 

3.88 

3.88 

3.88 

2.05 

A = 7.5 cm 
a (peak-trough) = 0.48 cm 
Total length = 90 cm 
A =  15cm 
a (peak-trough) = 0.96 cm 
Total length = 90 cm 

a(s) = a, exp [ -($I a, = 0.5 cm 
A = 7.5 om 
a, = 1 cm 
A = 7.5 cm 

Ri, = NB/( lJ# 
40-50 

4 

40-50 

40-50 

5 

40-50 

Maximum 
fluid speed 
(nominal) 

(cm/s) 
3.1 

5.7 

3.5 

3.5 

5.5 

3.5 

Description 

monochromatic 
forcing 

Unstable critical 
layer, 
monochromatic 
forcing 

Stable IW/Shear 
interaction with 
no critical layer 
within vertical 
aperture of probe 
array 

Unstable IW/Shear 
interaction with 
no critical layer 
within vertical 
aperture of probe 
array 

Unstable IW/Shear 
interaction with 
critical layer 

Stable IW/Sheer 
interaction with 
critical layer 

Stable critical layer 

TABLE -1. (a) Internal wave sources. (b) Experimental test conditions 

4. Experimental results and comparison with theory 
4.1. Experiment I : corrugated wall experiments 

The first set of experiments to be discussed involves the wave field generated by a 
sinusoidally varying corrugated wall. As identified in table I (a), two such sources 
were utilized having wavelengths of 7.5 and 15 cm, respectively, and 90 cm in length. 

Figure 5 shows the wave field (visualized using a shadowgraph) generated using 
the 7.5 cm corrugated boundary. In  the photograph, the corrugated wall is positioned 
close to the bottom and is moving from right to left at a speed of 2.5 cm/s. The fluid 
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(Nearly) colocated 
hot-film and conductivity 
probe rakes / 

FIGURE 3. Schematic representation of probe system. 

Vertical 
position 

(cm) 

8 - 
2 4 
Velocity (cm/s) 

FIGURE 4. Velocity profile measurement (in laboratory-fixed coordinates) using cycling hot-film 
probe (-) compared with that deduced using the dye-line distortion technique (----). 
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FIGURE 5. Shadowgraph image of wave field generated by 7.6cm corrugated wall towed at 
2.5 cm/s. Measured velocity profile (in coordinate system moving with corrugated wall) is shown 
superimposed on the photograph. Position of critical level noted by an arrow. Dotted lines have 
been superimposed on the photograph to accentuate the isopycnal displacements. 

near the top is also moving right to left at a velocity of about 3.6 cm/s, while the 
fluid close to the bottom is nearly quiescent. The horizontal striations that appear 
in the upper half of the tank are due to small-scale mixing which occurs in a 
honeycomb flow straightener (not shown) located upstream. The presence of these 
striations proved useful in visualizing isopycnic displacements while having no 
observable influence upon the dynamics of the flow. The ambient velocity profile (in 
convected coordinates moving with the towing speed) is shown superimposed on the 
photograph. In this coordinate system, the critical layer is located at the point where 
the velocity is zero. The gradient Richardson number in the vicinity of the critical 
level is approximately 50. 

From the wave field shown in figure 5, the inhibiting effect that the critical layer 
has upon the vertical propagation of the waves is clearly seen. Virtually no evidence 
of wave motion is observed in the upper half of the tank above the critical level. In 
the lower half of the channel, the wave displacements become significantly larger 
as the critical level is approached, but very close to the critical level the displacement 
amplitude diminishes to zero. Within the region where the displacement field is being 
amplified there also appears to be some asymmetry in the horizontal direction, with 
noticeably steeper wave slopes occurring on the forward face of the waves followed 
by more gradual slopes on the rear of the wave. Note that the flow in the neigh- 
bourhood of the critical level does not exhibit evidence of convective overturning 
or turbulence generation. 

The theoretical displacement field calculated using the wave-action model discussed 
in $2 is shown in figure 6. For these calculations, the measured ambient velocity and 
density profiles were used in the model to compute the perturbed velocity field which 
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Vertical 
position 
(cm) 

Vertical 
position 

(cm) 

FIGURE 0. Displacement field computed for test conditions of figure 5. 
- , ambient profile; ----, perturbed profile. 

was subsequently integrated to compute streamlines. Since the infinite Prandtl 
number limit is taken in the model, for this steady-flow calculation streamline 
displacements are identical with isopycnic displacements. In  comparing the theore- 
tically computed displacements with the observations it is found that most of the 
features of the experiment are reproduced by the model. The tendency for waves to 
be amplified as they approach the critical level is clearly exhibited in the model, as 
well as the attenuation to zero amplitude at the critical-level position. The tendency 
for the forward face of the waves to become steeper as they approach the critical level 
is also noted in the calculations. Finally, the model does not predict overturning 
waves anywhere in the flow field (particularly near the critical level), which is 
consistent with the lack of turbulence observed in the experiment. 

Also shown in figure 5 are the computed velocity and density profiles, which have 
been perturbed by the presence of the wave fields, superimposed upon the ambient 
distributions. The wave-induced density perturbations for this case are quite small, 
and not readily observed on the plot. The velocity perturbations are more readily 
seen. Note that the perturbed velocity field does not exhibit a zero crossing below 
the critical level. Orlanski & Bryan (1969) have argued that the occurrence of a zero 
crossing in the perturbed velocity field (in this convected coordinate system) must 
be accompanied by a region of negative density gradient. Such a negative gradient, 
unless balanced by viscous or diffusive effects or by centrifugal accelerations, would 
be statically unstable. Such static instability would lead to overturning and the 
production of turbulence, much like that occurring in breaking surface waves. That 
no such zero crossings are predicted for the perturbed velocity field is consistent with 
the lack of turbulent motions observed in the experimental data. 

An example of a wave/shear interaction where turbulence generation is observed 



Internal gravity waves in a strati$ed shear flow 461 

FIQURE 7. Shadowgraph of wave field generated by 15 cm corrugated wall towed at 3.88 cm/s. 
Measured velocity profile (in coordinate system moving with corrugated wall) is shown superimposed 
on the photograph. Position of critical level noted by an arrow. 

at the critical level is shown in figure 7. Here the longer wavelength (15 cm us. 7.5 cm) 
corrugated wall was used, and both the towing speed and the maximum fluid velocity 
were increased (table 1 b). The results shown in this figure exhibit the same trapping 
effect upon vertical propagation above the critical level seen in the previous 
experiment (figure 5 ) .  Similarly, the tendency for wave displacements to grow as 
waves approach the critical level from below is exhibited in the figure. The primary 
difference between the experimental resuts shown in figure 7 and the previous data 
of figure 5 is the preponderance of turbulent motions in the region below the critical 
level. 

The computed displacement field for this test condition is shown in figure 8. The 
calculations clearly exhibit overturning waves in the region in which turbulence is 
observed in the photograph. The implication is that as the waves approach the 
critical level they become convectively unstable and this leads to turbulence 
production as the overturning process develops statically unstable density gradients. 
This interpretation is supported by the computation of the perturbed velocity and 
density profiles where zero crossings in the velocity distribution correspond with 
regions of negative density gradient providing sites for convective instability, 
consistent with the aforementioned theory of Orlanski & Bryan (1969). The details 
of the wave/shear interaction in the neighbourhood of the overturning waves and 
the subsequent generation of turbulence arising from the static instability are not 
describable by the wave-action model. However, the comparison of the calculations 
and observations in figures 5-8 suggests that the parametric boundary separating 
laminar interactions from incipient wave breaking and development of turbulent 
motions may be predicted by the model. This transition from laminar to turbulent 
wave/shear interactions is believed to be due to changes in the relative importance 
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FIQURE 8. Displacement field computed for the test conditions of figure 7.  
-, ambient profile; ----, perturbed profile. 

of viscous effects upon the dynamics of the wave field. For example, if viscosity is 
zero the wave-action model predicts wave overturning at some point in the flow for 
all internal wave/critical-level flows (at positions progressively closer to the critical 
level as the viscosity is decreased). For finite viscosity, however, viscous effects act 
to impede this overturning process, and whether or not overturning occurs is 
dependent upon a number of parameters including the local Richardson number, the 
wavenumber, and the vertical wave-action flux. Koop (1981) presents a simple 
criterion based on a piecewise linear velocity profile which determines the conditions 
under which viscous stresses are sufficient to suppress the natural tendency of waves 
to overturn near the critical level. Approximating the measured velocity profiles in 
the present experiments by straight line segments and applying this criterion 
correctly predicts the stability (i.e. no wave overturning) for the wave field shown 
in figure 5, and instability (wave overturning) for that shown in figure 7 (see 
Appendix A for details). 

4.2. Experiment 11: Gaussian projle,  non-critical flow 
To examine the effects of shear on spatially compact non-sinusoidal disturbances a 
series of experiments was performed using a simple Gaussian profile shape as the 
internal wave source. Table 1 summarizes the experimental test conditions and the 
characteristics of the particular profile used for experiment 11. For this test, the fluid 
velocity (in laboratory-fixed coordinates) varies between 0.1 cm/s near the bottom 
to a maximum of 3.95 cm/s near the top. The mean flow Richardson number is 
approximately 50 (&  10 %). The towing speed of the Gaussian profile is 3.88 cm/s. 
For these experiments the full diagnostic probe arrays (both fixed and vertically 
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FIQURE 9. Shadowgraph image of wave field generated by Gaussian profile 1 for test condition 11. 
Insert is an example of a Kelvin-Helmholtz instability reproduced from Koop & Browand (1979). 
Note similarity between Kelvin-Helmholtz waves and those observed in the central portion of the 
photograph. Measured velocity profile (in coordinate system moving with the towed body) 
superimposed on the photograph shows a critical layer existed outside the vertical aperture of the 
instrumented portion of the flow field. 

cycling) were employed. Since the towing speed is smaller than the maximum fluid 
velocity, a critical level exists in the flow. It is noted, however, that the position of 
the critical.leve1 is 2 cm above the uppermost probe in the diagnostic array, and 
consequently is outside the vertical aperture of the instrumented portion of the flow 
field. Within the aperture of the instruments a critical level does not exist. 

The shadowgraph image of the wave field for experiment I1 is shown in figure 9. 
In  the photograph, the Gaussian profile generating the waves (which was out of the 
field of view of the camera) is shown drawn to scale in the lower portion of the figure. 
The profile is being towed from right to left, and the measured velocity profile (in 
coordinates moving with the towed obstacle) is also shown. The vertically aligned 
sensor array is partially seen in the extreme left-hand side of the photograph. Several 
distinct features exist in the photograph including the appearance of two bright 
bands inclined at an angle of approximately 10' with respect to the horizontal 
indicating a region of intense curvature in the density profile. It is also noted that 
the wave field is almost devoid of turbulent motions, with the possible exception of 
a curious wavelike structure observed in the centre of the photograph. The visual 
appearance of these waves is very similar to that of turbulent billows which evolve 
from the growth of a Kelvin-Helmholtz instability, an example of which is shown 
as an insert in figure 9, reproduced from Koop & Browand (1979). Whether such an 
instability is anticipated on the basis of local Richardson number considerations may 
be examined from the velocity and density profile measurements. Figure 10 shows 
the density profile measured by the cycling conductivity probe memured prior to the 
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FIGURE 10. Meaaured density profiles along ----, cycle 1 (ambient flow prior to the arrival of 
the waves) and -, cycle 5 (within the wave field) for test condition 11. 

arrival of the wave field (cycle 1) and within the wave field generated by the towed 
Gaussian-shaped object (cycle 5). The corresponding velocity profiles measured on 
cycles 1 and 5 of the vertically cycling probes (in a coordinate system moving with 
the towed Gaussian profile) are shown in figure 11 (for reference, the vertical 
positions occupied by the fixed rake sensors are also shown in this figure). From these 
profiles, the ambient flow gradient Richardson number is measured to be 
approximately 50. Locally within the wave field, however, the wave-induced velocity 
and density perturbations produce a Richardson number which is significantly 
smaller, approximately 0.2, suggesting that the wavelike structure observed in 
figure 9 was generated as a result of a dynamical Kelvin-Helmholtz instability in the 
region where the internal wave field generated by the towed obstacle interacting with 
the shear flow locally produce a Richardson number smaller than the critical value 
of 0.25. It is to be pointed out here that the computed Richardson number 
distribution based on the wave-action model also exhibits localized regions where the 
Richardson number falls below the critical value necessary for the growth of the 
Kelvin-Helmholtz instability. 

The density field measured by the conductivity sensors on the stationary vertically 
aligned probe array is shown in figure 12. The data presented represent density 
fluctuations recorded at eleven discrete vertical positions as a function of time as the 
waves propagate past the probes. In this density-time representation, a region of zero 
vertical gradient of density (i.e. the point of incipient wave overturning) is represented 
by a coalescence of two or more density traces, such that at a particular point in time 
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FIGURE 11. Measured velocity profiles along trajectories of ----, cycle 1 and 
- cycle 5 for test condition 11. 
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FIGURE 12. -, measured (stationary array) and ----, computed density field for test 
condition 11. 
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two probes vertically separated encountered fluid of the same density. Wave 
overturning, characterized by regions of negative density gradient are identified by 
density traces which cross over one another. One would anticipate such an overturning 
event to generate turbulence, such that at times following the intersection of two 
density traces high-frequency activity should be noted in the data. Also shown in 
figure 12 as dotted lines are the predictions of the wave-action model along with the 
approximate trajectory in density-time space which the vertically cycling probes 
followed during the experiment. 

The data from sensor number 11 in figure 12, which was the lowermost sensor 
positioned 4.5 cm above the towed Gaussian internal wave source, show a density 
perturbation characterized by single pulse-like disturbance toward lower density 
corresponding to a downwelling of fluid. Above this position, the measurements show 
vertical mode structure exhibiting cyclic variations of upwelling and downwelling, 
but the amplitude of the measured fluctuations diminishes near the top of the array. 
Sensor number 1 exhibits virtually no evidence of the internal wave field generated 
by the towed Gaussian shaped object. Denoted by an arrow in figure 12 is a region 
of near coalescence of density traces, which, as previously pointed out, corresponds 
to regions of nearly vertical isopycnic displacement. The location of these nearly 
vertical contours corresponds with the position of the observed wavelike disturbances 
believed to be due to Kelvin-Helmholtz instability which are observed in figure 9. 
Within this region the simple structure of upwelling or downwelling becomes more 
complex as features with shorter lengthscales (presumably due to the Kelvin- 
Helmholtz waves) are being observed, particularly on sensors 3-7. 

Figure 13 shows the corresponding velocity fluctuations measured by the vertically 
aligned array for experiment 11, plotted in the coordinate system moving with the 
towed object. Also shown are the calculations from the wave-action model. The data 
from sensor 10 show a pulse-like disturbance with deceleration followed by 
acceleration of the fluid. For linear internal waves u N -ap/az,  so that this velocity 
data is consistent with the corresponding downwelling followed by upwelling pattern 
observed in the density measurement from sensor 10 in figure 12. Above this point, 
the data show vertical mode structure with cyclic variations in velocity perturbations 
analogous to that observed in the density data. Near the top of the sensor array, the 
disturbance amplitude becomes attenuated, and sensor 1 shows virtually no evidence 
of internal wave motion. For several of the probes, viz. 3, 4, and 5, the perturbed 
velocity traces exhibit points of near-zero velocity. The location of these near-zero 
crossings closely corresponds to the near coalescence of density traces in figure 12. 
Such correspondence is to be expected on the basis of the previously discussed model 
of Orlanski & Bryan (1969). Within the region where Kelvin-Helmholtz waves are 
observed in the shadowgraph pattern (noted in the figure) the character of the wave 
field changes, with shorter-scale structures being observed, similar to those found in 
the density traces. 

The data presented in figures 1@13 provide a basis for comparing the wave-action 
model discussed in $2 with measurements of internal waves in a sheared environment. 
Superimposed on the measurements in figure 12 is the theoretical density field, 
computed using the measured ambient velocity and density profiles of figures 10 and 
11.  The measurements from sensor 11 in the conductivity probe array are used to 
initialize the model. In  comparing the predictions with the experimental results i t  
is found that many of the important features of the data are reproduced by the model. 
For example, the vertical mode structure of downwelling followed by upwelling on 
sensors 9 and 10 are predicted by the model to an accuracy of about 5 % . On sensors 
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FIGURE 13. -, measured (stationary array) and ----, computed velocity field for test 
condition 11. 

6-8 the character of the computed wave field changes to upwelling followed by 
downwelling, similar to what is observed in the data. For these sensors, the upwelling 
portion of the wave field is well predicted by the model (to within about 10 %) but 
the downwelling portion shows poor agreement with the data. This is not unexpected, 
however, since this is the region where Kelvin-Helmholtz waves are observed in the 
shadowgraph image of figure 9. Clearly, the shorter-scale disturbances due to 
Kelvin-Helmholtz waves observed in the data are not reproduced by the model since 
such dynamical instabilities are not incorporated in the model. In the region of the 
flow where such dynamical waves are absent, however, the agreement with the data 
is generally to within about 10-20%. Note too, that close to the top of the array 
(sensor 1) both the theory and the experiment show a marked attenuation in the 
disturbance amplitude. Recalling the previous discussion of figure 6 regarding the 
attenuating effect of viscosity near the critical level, and noting from figure 10 that 
sensor 1 is within about 2 cm of a critical level, it  is concluded that the observed and 
predicted attenuation near the top of the array is due to the increasing importance 
of viscosity near the critical level. 

The corresponding predictions of the velocity fluctuations for this experiment are 
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shown superimposed on the data of figure 13. The character of the data of sensor 10 
with deceleration followed by acceleration is predicted by the model to about 5 %  
accuracy. Above this, the vertical mode structure of acceleration and deceleration on 
the forward portion of the wave field for sensors 4-8 is well predicted by the model 
(about 10% accuracy), but the rear portion of the wave field shows significant 
deviations from the data. For sensors 2-5 this is most likely due to the aforementioned 
Kelvin-Helmholtz waves which superimpose shorter-scale disturbances upon the 
internal wave field produced by the towed Gaussian profile. As previously mentioned, 
such processes are not modelled in the wave-action theory. Finally, the attenuation 
of the disturbance amplitude noted in the density data is also predicted by the model 
for the velocity field. 

4.3. Experiment I I I :  amplitude effects 
To investigate the effect of the amplitude of the internal wave source upon the 
character of the internal wavelshear interaction, the test conditions for experiment 
I1 were repeated using the larger amplitude Gaussian profile (1 cm amplitude ws 
0.5 cm for experiment 11). Both the towing speed and the flow conditions for this 
experiment were identical with those of experiment 11. 

Figure 14 shows the shadowgraph image of the wave field for this test condition. 
Perhaps the most striking feature of this visualization is the presence of a great deal 
of turbulent activity within a banded region inclined about 10' from the horizontal 
in the mid-depth region of the channel. The location of this turbulent activity closely 
coincides with the position where Kelvin-Helmholtz waves were observed in the 
previous experiment. All but the very lowest probe on the vertical sensor array 
(conductivity sensor 11) passed through this turbulent region. Above the turbulent 
region two bright lines of constant phase are observed also inclined at  an angle of 
about 10' which do not exhibit evidence of largescale overturning and turbulence 
production (an example of an exceptionally energetic wave field which destabilized 
several constant phase lines is presented in Koop (1981), figure 12). 

The measured vertical density profile for the experiment depicted in figure 14, 
obtained using the vertically cycling array, is presented in figure 15. Shown here is 
the ambient density profile (cycle 1) along with the profile perturbed by the internal 
wave field generated by the towed Gaussian-shaped obstacle (cycle 5) .  In the ambient 
flow, the density distribution is approximately linear. The perturbed profile is quite 
different, however, with a region of negative gradient observed 10 cm above the 
internal wave source which is in the region where turbulent activity is observed in 
the shadowgraph visualization. 

The corresponding profile of velocity measured using the vertically cycling hot film 
is shown in figure 16 for both the ambient and perturbed fields. Note the large 
wave-induced perturbation which nearly produces a zero crossing in the velocity 
signal which, according to the Orlanski & Bryan (1969) model is indicative of wave 
overturning. 

The density field measured for the experiment depicted in figure 14 using the 
conductivity array is shown in figure 17. Some of the data shown exhibit features 
similar to those observed for the smaller amplitude internal wave source (figure 12), 
with the exception that the magnitude of the perturbations is larger. For example, 
the vertical mode structure such as the downwelling observed on sensor 11 evolving 
into upwelling followed by downwelling on sensor 10 is similar to what is found in 
figure 12. Above this point, however, the initial portion of the wave field shows 
upwelling or downwelling well correlated with the internal waves generated by the 
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FIQURE 14. Shadowgraph image generated by Gaussian profile 2 for test condition 111. Measured 
velocity profile superimposed on the figure shows that a critical layer did not exist in the flow field. 
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FIGURE 16. Measured velocity profile along ----, cycle 1 and -, cycle 5 for test condition 111. 
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FIGURE 17. -, measured and ----, computed density field for test condition 111. 



Internal gravity waves in a stratified shear flow 

x - 
I 

47 1 

- - 10 '8-- d 

I I 

Regions of negative 
velocity indicative 
of overturning 
events 

6 

8 

towed obstacle but the trailing portion of the wave field exhibits several cycles of 
a large amplitude disturbance having spatial scales significantly shorter than that 
of the Gaussian profile. Furthermore, several of the density traces within this area 
(sensors 3-7) coalesce indicating extended regions of zero or negative density 
gradient. The location of these higher frequency disturbances and zero density 
gradient regions closely corresponds with the area where turbulent motions are 
observed in the shadowgraph visualization. Near the top of the vertical aperture of 
the array (sensors 1 and 2) the disturbance amplitude diminishes, similar to what is 
observed for the small-amplitude case of experiment 11. 

Figure 18 shows the corresponding velocity measurements for this experiment 
obtained using the hot-film array. In  the region where density traces are found to 
intersect, the velocity traces show evidence of wave-induced zero crossings (sensors 
3 and 6 ; the electronics for sensor 5 saturated during the run but simple extrapolation 
of the unsaturated measurements suggest a zero crossing for this sensor as well). 
Again using the Orlanski & Bryan (1969) model, such zero crossings in the velocity 
data are indicative of waves which have begun to overturn and break as a result of 
their interaction with the shear flow. 

The theoretical density and velocity perturbations for the internal wave field 
generated by the larger amplitude towed Gaussian profile of experiment I11 predicted 
by the wave-action model are shown superimposed on the data in figures 17 and 18. 
Examining the density field first, it is seen in figure 17 that the cyclic variation of 
upwelling and downwelling in the forward portion of the wave field (sensors 4-10) 
is well predicted by the model (to within about 10%). In the trailing portion of the 
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wave field, however, the agreement between the theoretical predictions and the 
measurements is quite poor. This is not an unexpected result. In this portion of 
the wave field, the model predicts regions of zero density gradient which, in a real flow 
are sites for static instability and turbulence production. Within this region the 
wave-action model becomes invalid since the dynamics of overturning waves and 
turbulence production are hardly describable by the model which is based on 
properties slowly varying in a WKB sense. Thus, in the region of the flow where the 
model should be valid (i.e. the forward portion of the wave field ahead of the 
overturning waves) there is good agreement with the measurements. Behind this, in 
a sense, the model predicts its own obsolescence by predicting regions of negative 
density gradient where considerations of real flow effects, such as turbulence 
production from overturning waves, lead to flow fields with significant high-frequency 
content that would violate the slowly varying assumptions. Above the region of 
turbulent activity, the model predicts significant attenuation in the internal wave 
field generated by the towed body. Such attenuation is also noted in the experiments, 
although the theoretical predictions appear to overpredict the degree of attenuation 
which is actually observed. 

The computed velocity field for this experiment is shown in figure 18. For the 
lowermost probes in the forward portion of the wave field the observed cyclic 
variation of fluid deceleration on probe 10 to acceleration on probes 5 and 6 is 
reproduced by the model within an accuracy of about 10-20 %. Behind this region, 
the computed velocity for several of the sensors exhibit zero crossings (probes 3-5) 
in the same region of the flow where negative density gradients are predicted, 
indicative of wave overturning. Similarly to what is found for the density calculations, 
when such overturning is predicted from zero crossings in the velocity field the 
agreement with the measurements is quite poor. Above the region containing 
overturning waves (sensors 1 and 2) the model predicts significant attenuation in the 
internal wave-induced contribution to the velocity field. Such a result is observed in 
the data, although not to the extent predicted by the model. 

4.4. Experiment I V :  turbulent critical layer 

For experiment IV, the same Gaussian profile (a  = 0.5 cm) and towing speed 
(3.88 cm/s) used in experiment I1 were employed, but the maximum upper-layer flow 
velocity was increased to about 5.5 cm/s, such that a critical level existed near the 
centre of the channel. The ambient Richardson number within the sheared region for 
this experiment is about 5.0. 

Figure 19 shows the shadowgraph image for this experiment. From this visualiza- 
tion one observes that below the critical level there exists a banded region of turbulent 
fluid inclined at an angle of about 10" to the horizontal. Between this turbulent layer 
and the critical level the displacement amplitude is seen to diminish, and above the 
critical level there is no evidence of wave motion correlated with that produced by 
the towed Gaussian profile. 

The measured density perturbations for this experiment, shown in figure 20, 
exhibit a region of overturning waves in the centre portion of the conductivity probe 
array consistent with the turbulent region observed in the shadowgraph image. 
Above the overturning waves (sensors 1-5) the disturbance amplitude diminishes to 
nearly zero. The computed density field predicts the vertical mode structure of the 
forward portion of the wave field (downwelling on 9-11 followed by upwelling on 
sensors 6-8) to an accuracy of about 20 % . In the rear portion of the wave field, the 
model predicts a negative density gradient region (sensors 6 and 7) in close proximity 
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FIGURE 19. Shadowgraph images of wave field generated by Gaussian profile 1 for test condition 
IV. Measured velocity profile (in coordinate system moving with the towed body) shown 
superimposed on the photograph. 
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FIGURE 20. -, measured and ----, computed density field for test condition IV. 

to where the measured density data show evidence of overturning waves. As expected 
the agreement with the data in this area is quite poor, owing to the turbulent nature 
of the flow field in regions of negative density gradient. Above this, the model 
predictions show the same marked attenuation of the disturbance amplitude that is 
observed in the measurements. 
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The corresponding velocity measurements and model predictions are shown in 
figure 21. Once again, the structure of the forward part of the velocity perturbations 
are well predicted by the model (to about 5-10 yo accuracy), but once a zero crossing 
in the velocity perturbation occurs (e.g. measured on sensors 6 and 7 and predicted 
on sensor 6) the model predictions become invalid. Above the region of overturning 
waves, both the model and the measurements show the same marked attenuation 
in the disturbance amplitude as the waves approach the critical level. 

4.5. Experiment V :  laminar critical layer 

In this last experiment, an example is presented where the initial energy deposition 
into the wave field by the towed Gaussian-shaped obstacle is sufficiently small that 
even though a critical level exists the flow is everywhere stable. For this experiment, 
the 1 cm amplitude Gaussian profile shape was used and the flow conditions were 
approximately the same as those of experiment I1 (maximum fluid velocity 
3.25 cm/s), but the towing speed of the obstacle was reduced to 2.05 cm/s (compared 
with 3.88 cm/s for experiment 11). 

Figure 22 shows the shadowgraph image for this condition. As in experiment IV, 
the trapping effect that the critical level has upon the vertical propagation of the 
wave field is observed. Unlike the previous example, however, the critical level is 



Internal gravity waves in a stratified shear flow 475 

FIGURE 22. Wave field generated by Gaussian profile 2 for test condition V. 
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FIGURE 23. -, measured and ----, computed density field for test condition V. 

observed to be stable and exhibits no evidence of wave overturning or turbulence 
generation. 

The measured and computed density and velocity fields for this case are shown 
in figures 23 and 24. All of the results, both measured or computed, support the 
conclusion that the reduction in the energetics of the initial internal wave field 
generated by the towed object leads to a stabilization of the flow field in the 
neighbourhood of the critical level. 

16 YLM 172 
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FIGURE 24. -, measured and ----, computed velocity field for test condition V. 

5. Summary of results and conclusions 
The experimental results presented in the previous section have provided a 

quantitative description of the interaction of internal waves with a steady shearing 
motion, and demonstrate the effects of shear on wave overturning, turbulence 
production, the growth of Kelvin-Helmholtz instabilities, and the suppression of 
vertical wave propagation by critical level absorption. The experimental results have 
been compared in a quantitative manner with the predictions of a wave-action 
analysis, and in general the two compare favourably in regions of the flow where the 
model assumptions are valid, and poorly where the assumptions are clearly violated. 

Typically, in regions below the critical level, on the forward face of the wavetrain 
agreement to within about &lo% of the maximum disturbance amplitude is 
observed between the model and the data. Within this region, the assumptions made 
in the model appear to be satisfied in the experiment. For example, the slowly 
varying assumptions inherent in the WKB formulation of the wave-action analysis 
require that the properties of the medium vary on a scale which is large compared 
to that of the disturbance. Mied & Dugan (1974) have shown that €or this 
approximation to be valid, k, L ( L  being the lengthscale characterizing the mean flow 
properties) must be greater than about 2. In the present experiment, except in the 
regions of overturning waves this quantity is always greater than about 10. Similarly 



Internal gravity waves in a stratijied shear flow 

Envelop of _+ 5 % 
measurement error 

Schematic representation of 
measured velocity contaminated 
by k 5% measurement error 

Linear velocity profile 

477 

I I I I I I I I 
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

v c  - V(Z) 
t’c 

FIQURE 25. Schematic representation of measurement errors for a linear velocity profile. 
Measurement error assumed to be f 5 %  of local velocity magnitude. 

the model (as formulated in the present paper) assumes the disturbances to be 
stationary lee waves. For this to be valid, the transients associated with the start-up 
process of the towing system must have suficient time to radiate many wavelengths 
away from the source of the internal waves. In Koop (1981) it  was determined that 
the initial start-up transients have negligible effect upon the steady-state wave field 
when k, c, T (T being the time elapsed since the start-up of the towing system) is 
greater than about 25, and for the present experiment this quantity is typically 
greater than about 40. 

Behind the forward face of the waves, however, in many cases the agreement 
between the theory and the data is poor. The lack of agreement within this region 
is believed to be attributable to turbulence produced by the growth of Kelvin- 
Helmholtz waves or static instabilities due to wave overturning. Such processes 
violate several of the assumptions inherent in the model, particularly the WKB 
approximation. It is significant, however, that the model is capable of predicting 
where such Kelvin-Helmholtz instability or wave overturning might exist in the 
flow. The calculations for the test condition of figure 9, for example, show that the 
wave-induced contribution to the Richardson-number distribution produces localized 
regions where the Richardson number is below the critical value of 0.25 necessary 
for the growth of Kelvin-Helmholtz instability. For the test conditions of figures 7, 
14, and 19, the calculations predicted regions of overturning waves where turbulence 
should be expected (and is observed), and predicted no such overturning regions for 
the test conditions of figures 5 and 22 (which is also consistent with the observations). 

The comparison between the measurements and the model also showed that as the 
waves get very close to the critical level, the agreement gets noticeably poorer [cf. 
figures 12 (sensor 2), 13 (sensor 2), 17 (sensor 3), and 18 (sensors 2 and 3)]. This is 
possibly due to inaccuracy near the critical level of the velocity profile used in the 
calculations. In this region small changes in velocity have profound effects upon the 
predicted values of disturbance amplitude and phase. As an example of how such 

16-2 
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FIGURE 26. Effect of velocity measurement errors on computed phase and amplitude profiles. (a) 
Disturbance phase distribution. (b)  Disturbance amplitude distribution. -, calculation for linear 
velocity profile; ----, calculation assuming & 5 yo measurement error. 

measurement error can affect the predicted wave field, consider a shear flew (shown 
schematically in figure 25) which is linear with depth but can only be measured to 
an experimental accuracy of (say) 5 %, a value not unreasonable for the present 
apparatus. Using the model discussed in $2, the envelope of uncertainty in predicted 
amplitude and phase for this degree of experimental inaccuracy is shown in figure 26. 
The effect of measurement error on the disturbance phase predicted by the model 
is shown in figure 26 (a). Below about z/z, = 0.75 the effect of velocity measurement 
error produces phase errors less than 10 yo of the disturbance wavelength. Above this 
point, however, the phase errors grow rapidly with errors as large as two wavelengths 
or more being observed at z /z ,  = 0.95. Such phase discrepancies between the theory 
and the data are evident in figure 13, sensor 2 ,  and figure 18, sensors 3 and 4. The 
corresponding effect on wave amplitude is shown in figure 26(b ) .  Here, once again 
dramatic effects of measurement error on the magnitude of the wave amplitude are 
observed close to the critical level, above about z/z ,  = 0.75, which are consistent with 
amplitude discrepancies between the theory and the data seen in figure 18 sensors 
1 and 2 .  Thus, for detailed quantitative agreement between predictions and experi- 
mental data in regions very close to the critical level extremely accurate measure- 
ments of the velocity profile are required. In addition to stringent tolerances on 
experimental measurement accuracy, it may also be necessary to use in the 
wave-action model mean velocity measurements made within the wavefield (as 
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opposed to far upstream of the body). In this manner one could account for 
modifications of the mean flow by nonlinear interactions between the internal waves 
and the shear. 
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Appendix A 
In Koop (1981), a simple criterion was presented which predicted the occurrence 

or non-occurrence of a convective instability in the neighbourhood of a critical layer. 
Approximating the velocity and density profiles by straight-line segments with z = 0 
defining the location of the critical level, the criterion for instability involves finding 
the vertical position z, in the flow where the density gradient is locally zero. This 
position is governed by the expression 

where 
Ri = ambient Richardson number, 
k,  = horizontal wavenumber of incident wave, 
wo = maximum vertical velocity induced by incident wave, 
U, = ambient velocity gradient in sheared region, 
C = wave phase speed, 
v = kinematic viscosity, 

kZo = vertical wavenumber of incident wave, 

N = Brunt-Vliisiila frequency. 
= N / C ,  

If conditions are such that a value of z, does not exist for which (A 1) is satisfied, 
then a convective instability does not occur, and the critical layer is predicted to be 
stabilized by viscous stresses. 

For the experimental test conditions of figure 5, 

Ri k: 50, 
k,  = 0.55 cm, 
N k: 2.5/s, 
C = 2.5 cm/s, 
U, x 0.35/s, 
w, k: 0.31 cm/s, 
v = 0.01 cm2/s. 

Applying the viscous stability criterion of (A 1) for this set of test conditions, one 
finds that z, exp [$(z,)] is always greater than [Rbkzo w : / @  kilt for all values of z,. 
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Hence the critical layer is predicted to be stable with respect to convective 
overturning, consistent with the photograph of figure 5.  

For the experiment depicted in figure 7, 

Ri x 36, 
k, = 0.42/cm, 
N x 2.0/s, 
C = 3.46 cm/s, 

wo x 0.64 cm/s, 
v = 0.01 cm2/s. 

For these conditions, one finds that at a position approximately 4 cm below the 
critical level, (A 1) is satisfied, thus predicting the onset of convective overturning. 
This result is quite consistent with the photograph of figure 7. 

u, x 0.33/s, 

R E F E R E N C E S  

BELL, T. 1975 Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 
320. 

BRETHERTON, F. 1966 The propagation of groups of internal gravity waves in a shear flow. Q. J. R. 
Met. SOC. A92, 466. 

BROUTMAN, D. 1982 The interaction of short wavelength internal waves with background current. 
Ph.D. dissertation, Department of Oceanography, University of California, San Diego. 

GRIMSHAW, R. 1974 Internal gravity waves in a slowly-varying dissipative medium. Qeophys. 
Fluid Dyn. 6,  131. 

GRIMSHAW, R. 1975 Nonlinear internal gravity waves and their interaction with the mean wind. 
J. Atms .  Sci. 32, 1779-1793. 

KOOP, G. 1981 A preliminary investigation of the interaction of internal gravity waves with a 
steady shearing motion. J. Fluid Mech. 113, 347-386. 

KOOP, G. & BROWAND, F. 1979 Instability and turbulence in a stratified fluid with shear. J. Fluid 
Mech. 93, 135-159. 

MIED, R. & DUQAN, J. 1974 Internal gravity wave reflection by a layered density anomaly. 
J. Phys. Oceanogr. 4, 493498. 

MUNK, W. 1980 Internal waves and small scale processes, in Evolution of Physical Oceanography, 
pp. 264-291, MIT Press. 

ORLANSKI,~. & BRYAN,K. 1969 On the formation of the thermocline step structure by 
large-amplitude internal gravity waves. J. Geophys. Res. 74, 6975. 

THORPE, S. 1981 An experimental study of critical layers. J. Fluid Mech. 103, 321-344. 


